Provost Patricia E. Beeson has announced her decision on three graduate programs in the Dietrich School of Arts and Sciences whose futures have been uncertain since admissions were suspended nearly two years ago.

Graduate programs in religious studies will close and suspensions will continue—but only for a limited time—in German and classics.

Although recommendations by the Dietrich school and the University Council on Graduate Study (UCGS) diverged on religious studies and German, Beeson chose to accept Dietrich school proposals for the futures of all three graduate departments.

She delivered the news to Dietrich school Dean N. John Cooper and the affected department chairs before issuing a Jan. 30 memo outlining her decisions.

The letter was sent to administrators and to representatives and members of the University-wide groups involved in the review process. It is posted at www provost pitt edu announce ments 01 30 2014 html.

The Dietrich school plans have been a source of controversy on several fronts. The proposals drew scrutiny from the University, the Senate and the Pittsburgh chapter of the American Association of University Professors (AAUP) amid faculty concerns that shared-governance processes were neglected in the decision-making, a contention that University administrators dispute.

Other faculty decried the cuts in humanities programs as detrimental to the University’s educational mission, with numerous Dietrich school faculty joining English faculty member Marianne Noy in petitioning the provost to rescind the suspensions. (See Oct. 24 University Times.)

Citing budget constraints, Dietrich school administrators imposed a freeze, halted all to admissions to all three graduate programs in April 2012 (see April 19, 2012, University Times), later revising the plan to call for ending the MA and PhD programs in religion and humanities after a limited time. (See June 12 University Times.)

UCGS, which makes recommendations to the provost on graduate program proposals, in a closed session in October narrowly supported the Dietrich school proposal to suspend classics graduate admissions.

The sharply divided council rejected the other two Dietrich school proposals, opposing termination of religious studies graduate programs and suspension of graduate admissions in German.

(See Oct. 24 University Times.)

“There absolutely was no consensus on UCGS,” said UCGS chair Alberta Shraga, noting the votes all were almost evenly split.

Some viewed the indefinite suspensions as a slow means of terminating German and classics graduate programs through attrition. Beeson has given the Dietrich school a May 1, 2016, deadline to submit a proposal to lift the suspension or to close the German graduate program and set a May 1, 2018, deadline for a proposal to lift the suspension or close the classics graduate program.

Beeson stated, “This timeframe should be sufficient for the school to pursue opportunities that have emerged through discussions over the past 18 months for the faculty in these departments to engage in innovative inter-disciplinary graduate programs.”

The longer timeframe for classics “is intended to provide sufficient time to rebuild the faculty to a level that will enable it to continue exploring its role in interdisciplinary graduate education while advancing its undergraduate mission.”

Classics department chair Mark D. Possanza said the department had seven faculty members prior to a series of three faculty retirements since 2012, with another expected this year. One new faculty member joined the department last year and searches for new faculty are planned. However, the department is expected to remain at its current level of five full-time regular faculty unless a change, such as a surge in enrollment, occurs, Possanza said.

The provost’s decision “brings to an end a long, contentious and painful episode” in the Dietrich school and “sends a clear message: It’s time to move forward, there is no going back,” Possanza said, noting that the issues at hand extend beyond the three affected departments.

“Era important to remind ourselves that the serious and divisive issues involved in the suspensions and termination are not specific to these three graduate programs but are matters of concern to all members of the University community, whether they are willing to admit it or not: Reallocation of resources, statistical profiles of success and failure, national rankings, the marketability of knowledge and discovery, and that work is so entwined by cooperation—these issues remain very much alive and more than ever challenge us to think outside the self-assured boundaries of planning documents,” he said.

Beeson noted that in response to the provost’s decision we can find constructive ways to build the University’s future, he said.

John B. Lyon, German department chair, and Linda Penkower, provost’s assistant to the provost for academic affairs and chair of the religious studies department, told the University Times this week that their departments disagree with the provost’s decision.

The provost’s decision “brings about the serious and divisive issues involved in the suspensions and termination that their departments disagree with the provost’s decision. Let’s hope that in response to the provost’s decision we can find constructive ways to build the University’s future,” he said.

Alvin E. Roth, co-winner of the 2012 Nobel Prize in economics and a former Pitt professor, will be the keynote speaker at the University’s Feb. 28 honors convocation.

Chancellor Mark A. Nordenberg will bestow an honorary doctoral degree on Roth, who completed much of the economics research for which he won the Nobel Prize while serving as Pitt’s first Andrew W. Mellon Professor of Economics, 1982-92. Roth is currently a professor of Economics at Stanford and the Center for the Study of Economics and Business Administration Emeritus at Harvard.

Roth won the Nobel Prize along with Lloyd S. Shapley, professor emeritus of economics and mathematics at UCLA, for solving a key economic problem—how to match up buyers and sellers in a market in the best possible way.

Roth was born in the 1960s. Shapley developed a body of theoretical work in which he used cooperative game theory in market study matching. He found that it is important to find a “stable match,” in which there are no two agents who would prefer one another over their current counterparts.

When Roth was a Pitt faculty member in the 1980s, he began using Shapley’s results to explain how matching happens in practice. He continued on page 4

CONTINUED ON PAGE 4
Pitt endowment ranks 26th in national survey

Pitt was ranked No. 26 among 835 colleges and universities in an annual survey of university endowments released Jan. 28. The 2013 National Association of College and University Business Officers (NACUBO)-Commonfund Study of Endowments found that the value of Pitt’s endowment grew 11.7 percent in fiscal year 2013.

The University’s endowment finished the fiscal year at nearly $2.98 billion, up $374.64 million from nearly $2.60 billion in FY12. In the 2012 study, Pitt’s endowment ranked No. 25 with an increase of nearly $3.51 billion in FY11. (See Feb. 7, 2013, University Times.)

The report remained at the top of the list of institutions surveyed in the FY13 study. Its endowment grew 6.2 percent to stand at more than $12.31 billion in FY13. Overall, 82 institutions had endowments of more than $3.5 billion, up from 68 institutions in FY12.

“The average increase in market value for the institutions included in the survey was 10 percent and the median increase was 12.3 percent. The change in market value represented gains and losses, gifts and contributions, withdrawals and management and investment fees.

Endowment returns

The NACUBO/Commonfund study found endowments’ average rate of return was 11.7 percent for the fiscal year that ended June 30, representing a strong recovery from the average 0.1 percent return in FY12. For endowments worth more than $1 billion, the average return also was as nearly 0.8 percent from FY12.

The University’s investment management and president and executive officers, Ken Service, vice chancellor for communications, told the University Times: “The NACUBO report confirms what the University has been saying all along—our endowment is on the right track and the University is on a strong path.”

He noted that the University’s three-year investment performance — a compounded return of 11.25 percent — is among the top quartile of endowment performance in the nation.

The 835 institutions in the FY13 study averaged a three-year net return of 10.2 percent, with endowments worth more than $1 billion averaging a 10.5 percent three-year net return.

Spending rates

The average effective spending rate among the 835 institutions was 4.4 percent, up from 4.2 percent in the prior year. Institutions with $1 billion-plus endowments reported the highest—0.5 percent, the FY13 study found.

Pitt’s endowment spending made up 3.9 percent of the University’s fiscal year 2013 spending. Pitt’s endowment spending included $114.7 million for the 2013-14 academic year.

The University Times noted the effectiveness of its PowerPoint presentations.

Teaching with PowerPoint

Who hasn’t struggled to stay alert through a mind-numbing PowerPoint presentation as the presenter reads from lines of bulleted text? The notion of deciphering text and interpreting graphics while listening to a speaker has led many to equate PowerPoint with boredom.

In fact, multimedia researcher Richard E. Mayer, who presented a PowerPoint demonstration at shop last year, has used the term “PowerPoint overload,” which he defines as “a condition in which the mind shuts down because it is overwhelmed.”

Many faculty members rely on PowerPoint to deliver their lectures, typically using PowerPoint’s built-in templates and creating as much information as possible on each slide. However, many faculty who know that PowerPoint detracts from their lectures and question how best to leverage the program to enhance their students’ learning.

In fact, PowerPoint can serve as a useful tool to help structure a class session and deliver information. Research shows that, when created based on guidelines from cognitive processing research, it can enhance student learning.

Here are some guidelines for ensuring the effectiveness of your PowerPoint presentations.

• Before creating your presentation, make sure you understand the main point you want to introduce and the objectives you want to achieve. Having a clear purpose for your lesson will set you up for a more effective presentation.

• Use your organization to support the main point you want to introduce. Use clear and logical structure to support your learning goal.

• Write clear headings, rather than titles, at the top of each slide to orient your viewers to the main point.

• Avoid text—dense slides. Limit each slide to six lines of text with no more than six words per line.

• Eliminate everything from the slide that does not support the main idea stated in the header. Remove text from the slide and, and, and, and, and.

• Use simple textual animations (appear, fade, fly in) to help students focus on the content. Presenting a text-heavy slide without any animation means that students will spend time reading the slide rather than listening to you. You will be reading the third point on your slide while they are still reading the first point. Use the textual animations to have each point appear when you start to talk about it. This way you and your students will be on the same page.

• Avoid reading from text—dense slides. Limit each slide to six lines of text with no more than six words per line.

• Write clear headings, rather than titles, at the top of each slide to orient your viewers to the main point.

• Avoid text—dense slides. Limit each slide to six lines of text with no more than six words per line.

• Eliminate everything from the slide that does not support the main idea stated in the header. Remove text from the slide and, and, and, and, and.

• Use simple textual animations (appear, fade, fly in) to help students focus on the content. Presenting a text-heavy slide without any animation means that students will spend time reading the slide rather than listening to you. You will be reading the third point on your slide while they are still reading the first point. Use the textual animations to have each point appear when you start to talk about it. This way you and your students will be on the same page.

• Avoid reading from text—dense slides. Limit each slide to six lines of text with no more than six words per line. Eliminate everything from the slide that does not support the main idea stated in the header. Remove text from the slide and, and, and, and, and. Use simple textual animations (appear, fade, fly in) to help students focus on the content. Presenting a text-heavy slide without any animation means that students will spend time reading the slide rather than listening to you. You will be reading the third point on your slide while they are still reading the first point. Use the textual animations to have each point appear when you start to talk about it. This way you and your students will be on the same page.

• Avoid reading from text—dense slides. Limit each slide to six lines of text with no more than six words per line. Eliminate everything from the slide that does not support the main idea stated in the header. Remove text from the slide and, and, and, and, and. Use simple textual animations (appear, fade, fly in) to help students focus on the content. Presenting a text-heavy slide without any animation means that students will spend time reading the slide rather than listening to you. You will be reading the third point on your slide while they are still reading the first point. Use the textual animations to have each point appear when you start to talk about it. This way you and your students will be on the same page.

• Avoid reading from text—dense slides. Limit each slide to six lines of text with no more than six words per line. Eliminate everything from the slide that does not support the main idea stated in the header. Remove text from the slide and, and, and, and, and. Use simple textual animations (appear, fade, fly in) to help students focus on the content. Presenting a text-heavy slide without any animation means that students will spend time reading the slide rather than listening to you. You will be reading the third point on your slide while they are still reading the first point. Use the textual animations to have each point appear when you start to talk about it. This way you and your students will be on the same page.

• Avoid reading from text—dense slides. Limit each slide to six lines of text with no more than six words per line. Eliminate everything from the slide that does not support the main idea stated in the header. Remove text from the slide and, and, and, and, and. Use simple textual animations (appear, fade, fly in) to help students focus on the content. Presenting a text-heavy slide without any animation means that students will spend time reading the slide rather than listening to you. You will be reading the third point on your slide while they are still reading the first point. Use the textual animations to have each point appear when you start to talk about it. This way you and your students will be on the same page.
Novy, a Faculty Assembly representative of the humanities faculty, noted that UCGS, whose name wasn’t specifically mentioned in Beeson’s letter, was the only comprehensive report on the operations of the targeted departments and other Dietrich school faculty outside the committee to comment prior to its vote. “In the hour allotted for comment from the faculty, the committee members delivered the following information,” Novy said. “It was clear that many of the Dietrich school and a few other Pitt schools and the Greensburg campus signed a petition to rescind the decision to terminate and suspend.”

Novy told the University Times, “This is a sad decision for our University. There is no real financial urgency but a choice of priorities.”

Beeson, in her letter, stressed that the Dietrich school and the University “remain committed to providing a breadth-rich liberal education including a strong presence of the humanities in the undergraduate curriculum” and that she and Dean Cooper remain committed to the undergraduate programs within the department.

Cooper declined the opportunity to comment beyond stating via a Dietrich school spokesperson that he “fully supports the decision.”

Beeson acknowledged the difficult nature of the decision making, adding that it was not surprising that faculty are not unanimously supportive of the proposals for the graduate programs.

“These proposals have spurred discussion within the faculty of arts and sciences, of the value of graduate education and humanities programs which are core to the mission of any great university — and raised a number of questions about implementing programmatic decisions of this sort,” she wrote.

As for the consideration of the proposals, I have solicited input through the appropriate governance committees, discussed proposals with the chairs of the affected departments and considered the advice from colleagues who have chosen to weigh in on these decisions.”

She said the initial April 2012 announcement that the programs were under review for possible closure prompted the discussions within the Dietrich school.

“The school’s governance committees reviewed the proposals in the context of the school’s ambitions and budget and therefore the proposals, as stated, cited the Dietrich school graduate council’s endorsement and the subsequent approval by the Dietrich school council as well as the endorsement by the provost and a planning and budgeting committee.”

“It is important to recognize that the process viewed the school’s planning process as the designated governance committee, that it struggled with the question of how to allocate increasingly scarce resources in support of its programs,” Beeson wrote.

She cited Dietrich school planning documents that prioritize efforts with “the best opportunity to have a major national or international impact” and the decision to target graduate decisions rather than undertake across-the-board reallocations in the face of potential closures.

“Graduate education was identified as a function in which the proposals... The Graduate Dean, unfortunately, was technically appropriate, there was, as is always possible, room for improvement. Some involved faculty felt that the early exchange of information and dialogue was lacking,” Spring noted.

“I hope, in light of the conclusion of the BPC’s review, that the provost and the deans will redouble their efforts to engage the faculty in discussions around a vision where all involved parties can come to the conclusion that the art and science of budgeting, which is so difficult, are in the best interest of the institution. Ideally, shared governance should be an integral part of the review of decisions and plans but active involvement in their formulation from the earliest stages.”

Pitt AAUP President Beverly Gaddy, a Pitt-Greensburg faculty member who also serves on the University Senate and co-chairs BPC’s, said she is disappointed with the proposed changes, but hopes the process will prompt more faculty to familiarize themselves with the decisions and the AAUP standards and participate more in shared governance.

“Given that the fact that Provost Beeson had a difficult decision regarding this matter, and she apparently gave it considerable attention, especially as the recommendations of the appropriate academic bodies were considered,” Gaddy told the University Times.

She said that the Pitt AAUP began monitoring the issue in April 2012, “when we were first made aware of the developments, and we announced prior to any consideration of the issue that there was a lack of transparency, that being the case, we were disappointed.”

As for the faculty members who have been involved in developing a system for matching dentists with residency positions at hospitals. In another study, he worked with Pitt Psychiatrists M. Utku Unver on a study that led to improvements in the design of a program to match kidney donors with compatible recipients.

VITT / KIEFFER

University of Pittsburgh
More than 1,600 Pitt employees took leaves last year using the federal Family and Medical Leave Act (FMLA), while more than 600 claimed short-term disability, with about 60 transitions from short- to long-term disability.

"Everyone's situation is completely different," said Jimenez, supervisor of benefits in Human Resources, who made a presentation about leave benefits to this month's Staff Association Council board bag seminar on Jan. 23. Jimenez, who oversees the administration of leaves, was assisted by Jane Volk, manager of employee relations, who is the University's expert on the FMLA law.

Staff members who call off work for more than three consecutive days for a serious condition — which typically means being under a doctor's continuous care, although that encompasses simply being on medication — should file for FMLA leave, Jimenez said. "You never know what [the absence] is going to turn into," she noted, and the FMLAs designed to guarantee an employee's right to return to his or her job. The filing can also be withdrawn, Jimenez said.

Those who are able to plan an FMLA leave for an operation or other medical circumstances are expected to give a 30-day notice. FMLA provides up to 12 weeks of unpaid leave not only due to a staff member's medical condition, but to allow the staff member to take care of a spouse, child or parent, and for the birth, adoption or foster care of a child. These 12 weeks can be taken continuously or intermittently.

"If you have a need to take off, say, a day a month, that could still qualify for FMLA," Jimenez said — perhaps using it to take a sick day, say, a day a month, that could be used for the cost of the benefits normally is deducted from your pay, but is not required to use personal or vacation days.

Staff members are eligible for FMLA once they have worked at least 1,250 hours at the University within a year. This represents 65 percent effort and thus covers the typical part-time staff member.

Jimenez noted that, if you worked at Pitt for a year within the past seven years, left and then returned to Pitt recently, the previous year-long working period still may qualify you for FMLA.

During an FMLA leave, staff members are required to use all accumulated sick days. They are not required to use personal or vacation days, although they may wish to do so to maintain income during this unpaid leave. During a leave, staff do not accumulate sick, vacation and personal days.

"The length of time you receive these benefits all depends on your medical condition," Jimenez said of leaves for personal illness, "and that is all determined by MetLife," which administers the University's FMLA, short- and long-term leaves.

The insurance company's clinical staff determines your eligibility and manages the medical portion of your claim. Jimenez says the company is good at calling to keep track of evolving leave decisions and sending forms for the staff member to fill out. "Make sure ... you're responding to those promptly," she said.

The University, because of health care privacy issues, do not want to know what your medical condition is," she added. "As a supervisor, you don't want to ask your employee why they are going out," apart from clarifying whether an absence is part of an intermittent FMLA leave or due simply to a cold.

MetLife, with input from your doctor, also determines whether the leave is continuous or intermittent. In either case, Jimenez said, employees still must use PRISM TRKS to log employment hours.

"Once your FMLA is exhausted, you still may be eligible to be on short-term disability," Jimenez said. In fact, the two leaves sometimes are taken simul-

Pitt's leave program detailed

M

From further information:
phone: 412-648-7120
email: msl@pitt.edu
web: www.law.pitt.edu/academics/ml

Put a Little Law in Your Life

- Complete a Master of Studies in Law degree in as little as one year or at your own pace over several years.
- Concentrate in more than 20 areas, including Business Law, Disability Law, Dispute Resolution, Employment Law, Energy Law, Environmental Law, Health Law, Intellectual Property and Technology Law, International Law, Regulatory Law, Tax Law, and more.

... And if that’s not enough, create your own Master’s concentration.

For more information:
Phone: 412-648-7120
Email: msl@pitt.edu
Website: www.law.pitt.edu/academics/ml
Provost's lecture examines engineering education's PAST & FUTURE

The engineering classroom is a student-centered, technology-enabled and problem- or project-based, with subject matter that is integrated with other disciplines, said industrial engineering faculty member Larry J. Shuman.

Shuman, the Swanson School of Engineering's senior associate dean for academic affairs, offered his observations on engineering education's past and future in a Jan. 23 provost's inaugural lecture celebrating his appointment as Distinguished Service Professor of Engineering Education.

Throughout the history of engineering education, sentiments about the kind of schooling engineers need have flip-flopped between “too much” and “not enough,” said Shuman.

From the 1890s onward, “Almost every 10 years you could count on a major study on engineering education either recommending ‘too much’ or ‘not enough,’” he quipped. “There’s not enough science, there’s too much science. Too much practical experience, not enough practical experience, or calls for ‘more design’ or ‘improving teaching, learning and understanding.’”

In the 1840s, Pitt's earliest engineering students had to complete a BA degree before they could take technical and science courses, Shuman said. Strong conservative educational influ-ences prevailed at what was then the Western University of Penn-sylvania, he said. “They wanted technical training but they wanted a University degree first,” he said, adding that the practice was not unusual at the time. “The feeling was that you first had to pass this classical examination and get your BA, then you could have technical subjects.”

Those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineering in 1874.

The growth of railroads and the telegraph increased demand for engineers, Shuman said. By 1880, the nation had 85 engineering students. Company-sponsored engineering education began in 1868 and 1873, Shuman said, noting that those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineering in 1874.

The growth of railroads and the telegraph increased demand for engineers, Shuman said. By 1880, the nation had 85 engineering students. Company-sponsored engineering education began in 1868 and 1873, Shuman said, noting that those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineering in 1874.

The growth of railroads and the telegraph increased demand for engineers, Shuman said. By 1880, the nation had 85 engineering students. Company-sponsored engineering education began in 1868 and 1873, Shuman said, noting that those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineering in 1874.

The growth of railroads and the telegraph increased demand for engineers, Shuman said. By 1880, the nation had 85 engineering students. Company-sponsored engineering education began in 1868 and 1873, Shuman said, noting that those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineering in 1874.

The growth of railroads and the telegraph increased demand for engineers, Shuman said. By 1880, the nation had 85 engineering students. Company-sponsored engineering education began in 1868 and 1873, Shuman said, noting that those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineering in 1874.

The growth of railroads and the telegraph increased demand for engineers, Shuman said. By 1880, the nation had 85 engineering students. Company-sponsored engineering education began in 1868 and 1873, Shuman said, noting that those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineering in 1874.

The growth of railroads and the telegraph increased demand for engineers, Shuman said. By 1880, the nation had 85 engineering students. Company-sponsored engineering education began in 1868 and 1873, Shuman said, noting that those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineering in 1874.

The growth of railroads and the telegraph increased demand for engineers, Shuman said. By 1880, the nation had 85 engineering students. Company-sponsored engineering education began in 1868 and 1873, Shuman said, noting that those classical requirements were dropped soon after the School of Engineering was char-tered in 1856. Four-year degrees in civil and mechanical engineer- ing were created in 1868 and 1870, in 1869 a mining degree was added, Shuman said, noting that Lemuel Strasser became the University’s first true engineering graduate, completing a degree in civil engineeri...
Standing room only filled the Union
Club's largest meeting space to hear Nobel lau-
rate Carl Wieman, a noted expert on science education, share his wisdom on science teaching and learning.

Wieman, a professor of physics and
den at Stanford and former deputy director of the
White House Office of Science and Technology Policy, spoke on "Taking a Scientific Approach to Science Education."

The Jan. 30 talk was the inaug-
lar event of Pitt's new Disci-
line Based Science Education Center (DB-SERC), led by physics and astronomy faculty member and physics education researcher Chandrakala Singh. (See Jan. 23 University Times.)

In welcoming remarks, Diet-
 School of Arts and Sciences Dean N. John Cooper said the launch of DB-SERC springs from the University's "renewed commitment to the centrality of the undergraduate program in so much of what we do."

Cooper had earlier said the ways in which one can successfully teach undergraduates the principles and practices of the core disci-
ines are changing all the time, and changing in a way that can be informed by evidence-based experiments on what works better in the classroom. Within the school we have been talking about ways in which we can make sure our programs are cutting edge, that they take full advantage of the various deans to really transform the quality and impact of the undergraduate program.

A key goal of science education, Wieman said, is "to have, in all the different fields, students better understand and be able to think about the respective areas of science, engineering and math ... more like the scientists in that field!" — even if they don't go into that field.

But what is it that instructors in the sciences want their students to learn? What does it mean to help students think more like scientists? And how is that achieved?

New research is changing commonly held ideas about how people learn complex tasks, Wieman said.

The old paradigm — that the extent to which knowledge is absorbed into a student's brain is related to differences in individu-
als' brains themselves — is being replaced by the view that students' brains actually aren't all that dif-
rent from another.

"The learning process is really them transforming, developing via suitable exercise," Wieman said. "And to the extent that they undergo similar kinds of exercise, they achieve similar kinds of learning."

Wieman said that when he first started teaching physics more than 35 years ago, his approach was similar to most: "I'd give them some prob-
lems to solve and if they couldn't do that problem, it meant there was something wrong with the students because I clearly understood it and I'd just explain it to them."

Unlike "mean" faculty, whose solution was to simply get rid of the bad students, "I told them telling me with the expectation that it would achieve better results," he quipped, drawing laughter from the audience.

The situation was frustrat-
ing. "It was clear to me that my brilliantly clear explanations were leaving the vast majority of the students quite baffled." His colleagues were working much better, he said. "It seemed like it was just kind of a reality I couldn't do much about."

Wieman said his enlighten-
ment came over the course of working with graduate students in his atomic physics lab. These students didn't get into my lab unless they'd had 17 years of being very successful in the classroom, particularly in physics courses. But in my research lab, they were pretty much clueless about how to actually do phys-
ics, he said.

"But after just a couple of years of working in the research lab, they had turned into expert physicists."

Over time, he found a consist-
tent pattern. "If anything, there was this anti-correlation between success in coursework and how good a physicist they became. I became convinced that there was really some fundamental question here."

Wieman set about tackling the question: What do we know about the research on how people learn, particularly about how they learn physics? He studied existing research then did studies himself.

In the past couple of decades, major advances have been made in cognitive psychology (studying how people think and learn), brain research, and the study of college science classrooms, Wieman said.

"The findings from all of these areas are now coming together in a very nice way to give us a much clearer understanding of guiding principles about what is important and how to achieve learning of complex expertise like science and mathematics."

Expert thinking

Cognitive psychology research has revealed three basic elements in what makes up expert thinking, he said:

• Experts have lots of factual knowledge about their discipline. Each discipline has an organi-
zational mental framework used to retrieve and apply that knowledge to solve problems.

• Experts have the ability to monitor their thinking and learn-
ing, checking themselves on their understanding and on ways to arrive at solutions.

Research has shown that no one innately has these character-
istics in any discipline, Wieman said. "These are fundamentally new ways of thinking," he said.

Expertise is built much in the same way that exercise builds up a muscle. "Everybody requires many hours and, to reach a high level of expertise, thousands of hours of intense practice actually to develop expert-like abilities," he said.

"The brain is substantially changed and rewired in this pro-
cess to develop expertise," he said. "Biologists say you've got to put in this much work to develop it."

Putting in the hours is impor-
tant, but how those hours are spent matters too. The learner must be undertaking challenging and doable tasks that provide practice at expert thinking.

"Learning also must get feed-
back on their performance and reflect on it, he said. It takes about 10,000 hours of this intense practice to develop expertise, after which the learner has a very different brain, Wieman said.

That makes it hard for experts to understand and perceive things the way novices do, he noted. "One of the challenges of teaching is that you've got no self-
reference for your brain. So you think that is how you learned. It's not actually correct at all because you're taking a different brain and trying to project it back." Effective teaching

What does a good teacher do? "The best we understand is really to think of the teacher as a cognitive coach," he said. "It's what the learner has to do, a good teacher facilitates this."

"Each teacher must identify the sort of thinking that makes up expertise and design practice tasks that the students will undertake. They also must provide specific feedback that guides students on how to improve. And the teacher needs to motivate their students."

"You really can't expect a sci-
cient student who doesn't understand what they know about something, to see, "Oh, it's really important that I put in a thousand hours of practice this way." That's on this when I don't even know what it is." The teacher has to also show the learner as to why this is important and useful and rewarding for them to put in all that effort.

Effective teachers must have high levels of expertise in their subject, he said. "At some level, this is really the justification for research universities. It's why expertise is important in being effective at teaching."

Evidence from the classroom

How to apply the rules varies by subject area, Wieman said, but effectiveness of alterna-
tive teaching methods is really measured against the standard lecture approach.

One area that has been studied is conceptual mastery: How well stu-
dents take the underlying concepts or models used in the discipline and, given a new situation, cor-
rectly recognize which concepts are relevant then apply them to make correct predictions on what will happen in that situation.

In physics, for example, a common measure is the force concept inventory, which takes a subset of the essential concepts of force and motion and measures how well students apply them to real-world applications. Given to students before and after a course, the inventory provides a measure of learning produced by the course.

Wieman said research has shown that when courses are structured to focus on how the student learns, the amount of new information typically doesn't exceed 30 percent of the information students want students to learn. "They only learn a third of what they didn't know coming in," he said.

The findings are independent of other factors such as the quality of teachers, class size or institution. "The traditional lecture approach is simply an ineffective way for a student to develop conceptual mastery," he said.

"Teaching that includes ways for student to be involved in the content concept shows results higher by a factor of two, compared with traditional teaching." Cooper said. "This is a result that's been replicated over and over and over." He cited several examples.

One study of introductory physics at Cal Poly showed that students using a "teaching for understanding" approach in which the instructor facilitated and coached students through learning activities, rather than having students engage in rote learning activities yielded better conceptual mastery.

The student learning was really dominated by the teach-
ing practice the instructor used, not any particular teaching methods. "It was really important to note," said Cooper, noting that some instructors who simply applied this different

Nobel laureate shares wisdom on teaching, learning

A nobel laureate shares wisdom on teaching, learning
method of teaching found their students learned six times more.

"That's pretty incredible," he said. "How can any university administrator look at that and not go back and say to faculty: You've got to teach this way. We can't tolerate our students learning a sixth of what they might?"

A University of California-San Diego study of computer science learning showed that a peer instruction approach (in which students talked among themselves and responded with clickers to questions posed in class) cut failure and dropout rates from 20 percent to 7 percent.

Wieman noted: "This is a whole lot of students who now are successful in the subject going on ... that would have failed or dropped our otherwise."

Noting that such studies measure the learning that takes place over the course of a term — including what might be gained by doing homework and studying for exams — another study pitted an experienced, successful professor against a postdoc trained in the principles of effective teaching.

"The result: Students taught to teaching have been in the past."

"When someone is engaged in a question, even if they can't answer it, it's tremendously beneficial for learning from a follow-up explanation," he said. "It's tremendously more powerful than giving them the explanation before they know the question."

Be attuned to what students understand. Instructors should listen in on those discussions, you get so much better at finding out where they're at, what they're struggling with, what they understand. And you're poised to be much more effective in your subsequent follow-up discussions and presentations," he said.

"It's tremendously more powerful than giving them the explanation before they know the question."

In closing, Wieman recapped his vision: "Approaching teaching and learning really as a science, doing research, looking at these basic principles of how people learn, thinking about applying these in the classroom and testing how they work. And so we can really make this like astronomy rather than like the astrology that, frankly, much of our approaches to teaching have been in the past."

—Kimberly K. Barlow
Pitt, 2 physicians sued

aren A. Norris, faculty member in immunology in the School of Medicine, and Heather Kling, a doctoral associate in immunology, are suing the University and two physicians at the Richard King Mellon Foundation Institute for Pediatric Research at Children’s Hospital National Medical Center.

The suit states that the two Pitt researchers “together conceived and reduced to practice a vaccine for psoriasis,” which, although common in young people, can cause “a deadly pneumonitis” in those for whom it has caused a “weakened immune system.”

It alleges that the physicians, Jay K. Kolls and Mingkuan Zheng, “were part of a continuing and deliberate scheme to steal the plaintiffs’ data as their own” and have filed “fraudulent patent filings.”

When contacted, Norris and Kling directed calls to their attorneys, James E. Beasley Jr., of Philadelphia, who did not respond to requests. Zheng was unavailable, while Kolls referred callers to his lawyer, Vicki Kutzke Horne of Pittsburgh, who responded to questions with a statement.

That statement references an internal Pitt inquiry in the ongoing dispute that last year, found Kolls guilty of “research improprieties” for issues surround-

ing record-keeping and citations of the Norris/Kling research in his own studies, but not miscon-
duct. This conclusion prompted the law firm’s claim that Pitt was “conspiring with Kolls” in the matter over who had rights to a patent filing.

The statement also references the different lines of animal investigation studying the murine sequence as a vaccine in the murine model while the Norris lab studied antibody response in monkeys.

“We think the ‘Norris’ suit is without merit. The independent inquiry panel already established that the work of the Kolls lab on mini-kinin predated any involve-

ment with Heather Kling’s thesis committee and that the Kolls lab had an independent line of investigation studying the murine sequence as a vaccine in the murine research each side has undertaken.

“We think the ‘Norris’ suit is without merit. The independent inquiry panel already established that the work of the Kolls lab on mini-kinin predated any involve-

ment with Kolls’s thesis committee and that the Kolls lab had an independent line of investigation studying the murine sequence as a vaccine in the murine research each side has undertaken.

“We think the ‘Norris’ suit is without merit. The independent inquiry panel already established that the work of the Kolls lab on mini-kinin predated any involve-

ment with Kolls’s thesis committee and that the Kolls lab had an independent line of investigation studying the murine sequence as a vaccine in the murine research each side has undertaken.
Faculty were recognized at the 2013 School of Medicine curriculum colloquium for their outstanding contributions and service to the education of medical students.

- Distinguished Service Award in Medical Education, which is the highest honor in medical education given by the School of Medicine: Allen L. Humphrey, neurobiology; Thomas A. Mediger, Gerald P. Rodnan Professor of Medicine.
- Kenneth E. Schuit Award, which recognizes basic science and clinical faculty for education-related contributions to the medical school's curriculum: Paula Monaghan-Nichols, neurobiology; Evan L. Waxman, ophthalmology.
- Sheldon Aller Award, which recognizes individual achievement in medical education innovation: Ankur A. Doshi, emergency medicine.
- William I. Cohen Award, which recognizes faculty who consistently provide outstanding clinical skills instruction for first- and second-year medical students: Basil J. Zitelli, pediatrics; Dianne M. Zalenski, medicine.
- Award for Excellence in Clinical Precepting, which recognizes clinical preceptors who consistently provide outstanding clinical instruction in a community setting for medical students: James S. Costlow, Premier Medical Associates; Douglas P. Stewart, Children's Community Pediatrics; Jonathan Weinkle, volunteer clinical instructor, pediatrics.
- Clinical Educator of the Year Award, which recognizes faculty who consistently provide outstanding clinical education in a third- or fourth-year elective course setting for medical students: Susan M. Dunmire, emergency medicine; James M. Perel, emeritus professor of psychiatry, pharmacology and chemical biology; Paul L. Rogers, critical care medicine.
- Donald S. Fraley Award, which recognizes individuals for their outstanding contribution to medical education through their service as mentors to medical students: Giselle G. Hamad, surgery.
- Clerkship Preceptor of the Year Award, which recognizes individuals who consistently provide outstanding clinical instruction in the clerkship setting for medical students: Sean E. Button, pediatrics; Jason S. Chang, emergency medicine; Diego Chaves-Gnesco, pediatrics; Patricia L. Dalby, anesthesiology; David C. Dernoise, medicine; Lawrence D. Geber, medicine; Martin G. Johns, UPMC McKeesport; Robert G. Kanecki, neurology; Joyce S. Leifer, pediatrics; Michael J. Marciussen, psychiatry; Paul D. Speer, obstetrics, gynecology and reproductive sciences; S. Tonya Stefo, ophthalmology; Gregory A. Watson, surgery.
- 2013 Excellence in Education Awards presented by the Class of 2016 for contributions and dedication to teaching of the basic sciences and organ systems: course director — John B. Schumann, neurobiology; lecturer — Jeffrey S. Nine, pathology, small group facilitator — Cynthia Lanc Jones, neurology.
- 2013 Excellence in Education Awards presented by the Class of 2015 for contributions and dedication to teaching of the organ systems: course director — James R. Johnston, medicine; lecturer — Jeffrey S. Nine, pathology; small group facilitator — Reed W. Van Derv, medicine.

Equipoise has given its first Dr. Martin Luther King Jr. Creating a Future Community Award to John Wilds, assistant vice chancellor for community relations.

Two members of Pitt's School of Nursing faculty have been included in Online LPN to RN's listing of "100 Inspiring Nursing Professors to Watch in 2014."

Jacqueline Dunbar-Jacob, dean and Distinguished Service Professor of Nursing at the School of Nursing, and Annette DeVito Dobbs, chair of the Department of Acute and Tertiary Care, were included on the unranked list of nurse-educators.

Robert M. Enick, NETL (National Energy Technology Laboratory) Faculty Fellow, Bayer Professor and vice chair for research in the Department of Chemical and Petroleum Engineering, was the inaugural recipient of the department's James Maren Pommershein Award for Excellence in Teaching. The award was established with a gift from Pommershein, an alumnus of the department. It recognizes departmental faculty in the areas of lecturing, teaching, research methodology and research mentorship of students.

The People of the Times column features recent news about staff and faculty, including awards and other honors, accomplishments and administrative appointments.

Send information via email to utimes@pitt.edu. For submission guidelines, go to www.utimes.pitt.edu/page?id=6807.
Friday, February 28, 2014
3:00 pm
Carnegie Museums of Pittsburgh Music Hall

Honor Convocation

Join Chancellor Mark A. Nordenberg and the University community in honoring the achievements of faculty, students, alumni, and staff at the Honors Convocation.

Thursday 6
CIDDE Workshops

Molecular Biophysics/Structural Biology Seminar
Kris Dahl, GMU; 604 BST, 11 am

Chemistry Seminars
“Combining Organic Synthe-
sis & Directed Evolution to Design HIV Vaccines,” Isaac Koons, Brandeis, 2-10 pm; “Disassembling the Complex Chemical Mechanisms Underly-

Geology & Planetary Science Colloquium
“Compound-Specific Sulfur Isotopes Reveal Two Pathways in the Sulfitization of Kerogens,” Alex Sessions, Caltech; 11 Thaw, 1-10 pm

Contemporary Writers Lecture
Walter Mosley; FFA aud., 8:30 pm (4-6508)

Friday 7
IEE Workshop
“The First Step: Mechanics of Starting a Small Business”; Megs, 7-10:30-10:30 am (register: ieew@katz.pitt.edu)

Bradford Campus Admissions Preview UPE, 10 am (register: https://www.upb.pitt.edu/visit.aspx)

CIDDE Workshops
“Best Practices for Audience Response Systems”; B26 Alumni, 10-10 am; “TA Services: Grading, Feedback & the Curve,” B12 Alumni, noon; “sicker Overview,” B26 Alumni, 1 pm; “TA Services: Gender, Author-

Biomedical Informatics Lecture
“Applying Evaluation Principles to Health Information Systems in PEPFAR Countries: Notes From the Field,” Jamie Richards, 407A Baum, 11 am (tls18@pitt.edu)

GI Research Rounds
“Genetics of Alcoholic Liver Disease,” Alison Jazwinski; Presby conf. rm. M2, noon(pj28@pitt.edu)

Psychiatry Lecture
“Psychology of Suicidal Behavior in Borderline Personality Disorder,” Paul Solomon, WPIC aud., noon

UCSCR Lecture
“Chicago Chicagology: A New Approach to Homicide Research,” Randall Walsh, econo-

CRSP Lecture

Human Genetics Seminar
“The Dynamic Death of Neuro-

Emerging Legends Concert
Susanne Ortner-Roberts; Cup & Saucer, Uncur cur. Hillman, noon

Tuitionville Campus Dinner & Show
“Steel Impressions”; Henrad, UFP, 7 pm (414-827-4411)

Saturday 8
CIDDE Workshop
“New Teaching Assistant Orient-

Psychology Lecture
“Poverty, Conditional Cash Transfers & Children’s Develop-

Monday 10
Chemistry Lecture
“Nanoscience & the Future of the Global Carbon Cycle,” Paul Alivisatos, UC-Berkeley, 110 Chester, 4 pm

Biological Sciences Lecture
“Unraveling the Effects on microRNAs: Targets & mRNA Remodeling,” Olivia Rusland, Whitmore Inst., 4 pm

Tuesday 11
Senate Benefits & Welfare Committee Mtg.
403 Alumni, noon

CIDDE Workshops

Integrative Oncology Lecture
“Making Wellness a Reality: Exercise,” Hillman Cancer Ctr., Cooper conf. rm. C, 10 am (scottl@upmc.edu)

Global Health Film Screening
“It’s a Girl!” 109 Parran, noon-2 pm

Basic & Translational Research Seminar
“Integrative Genomic Analyses of Infection-Related Cancers,” Akimyeni Ogunsi, Dana-Farber Cancer Inst.; Hillman Cancer Ctr. Cooper classrm. D, noon (orygl@qumc.edu)

HSLS Workshop
“Advanced PowerPoint for Pre-

HSLS Workshop
“TA Services: Writing Tests & Grading, Feedback & the Curve,” B26 Alumni, 10 am (www.cidde.pitt.edu/news/workshops)

Integrative Genomics of Infectious Disease,” Jonathan Akins; Falk Library classrm. 2, 10 am (aarow@pitt.edu)

HSLS Workshop
“How to Conduct a Mecha-

CIDDE Workshop
“Design & Synthesis of Multi-

Chemistry Lecture
“Diversity in Leadership: Influence & Social Change,” Paul Alivisatos, UC-Berkeley, 150 Cherwon, 2:30 pm

Public Health Seminar
“Social Networks to Combat Obesity: Worth the Effort?” David Shuhim, Loyola U-Chicago; 109 Parran, 10 am

Pharmacology & Chemical Biology Seminar
“Pharmacology in Post-Gene Era: A Perspective of a Compu-

Contemporary Writers Lecture
“Cancer Informatics,” Ansuman Chattopadhyay; Falk Library classrm. 2, 1:30-3:30 pm (aj56@pitt.edu)

Wednesday 12
CIDDE Workshop
“Best Practices in Online Teach-

SAC Mtg.
WPU ballrm., noon

Pathology Seminar
“Up, Down or Sideways? Look-

Social Work Lecture

HSLS Workshop
“Cancer Informatics,” Assmann Chattopadhyay, Falk Library classrm. 2, 1-1 pm (amsinan@pitt.edu)

UHC Lecture
“Challenging Assumptions About Drugs,” Carl Hart, WPIC aud., 1:10 pm

Office of Academic Career Development Online Webinar
“Diversifying Your Funding Portfolio: Grant Resources on the Web,” Barbara Follis, 3:5 pm (register: www.oacd.health.pitt.edu)

Men’s Basketball
Vs. Syracuse; Petersen, 7 pm

Thursday 13
CIDDE Workshop

Molecular Biophysics/Structural Biology Seminar
“Molecular Insights Into the Recognition & Generation of Cellular Membrane Pore Formers,” Fang Tian, PSU, 6104 BST, 11 am

CONTINUED ON PAGE 11

www.convocation.pitt.edu
Friday 14

CIDDIE Workshop

Psychiatry Clinical Grand Rounds
“Mental Health & Violence,” Edward Midyke, WPIC, aud., 4 pm

Sr. V’s Seminar
“Molecular Mechanisms of Alzheimer Recognition in Invertebrates,” Matthew Nicotra, surgery, A15 Crabtree, noon

Women’s Studies Lecture
“The Politics of Rescue & the Politics of Forgetting: Examining the Contemporary Allure of Rescue Agendas in Feminist Politics,” Una Narraway, Vassar, 4:30 pm

Saturday 15

EUCE Conversations on Europe
“The Big Bang 10 Years Later: East Europe & the EU After Expansion”; 8:15 pm, noon (www.cidde.pitt.edu/news/workshops)

Tuesday 18

CIDDIE Workshop
“TA Services: Assessing Writing Assignments”; 8:15 Alumni, noon (www.cidde.pitt.edu/news/workshops)

Wednesday 19

CIDDIE Workshop
“iPad Meetup”; 8:15 Alumni, noon (www.cidde.pitt.edu/news/workshops)

Health Sciences Informational Seminar
“Painless PubMed,” Ester Sagar, Falk Library classrm., 3:30-4:30 pm

Thursday 20

CIDDIE Workshops
“TA Services: Designing In-Class Activities”; 8:15 Alumni, noon (www.cidde.pitt.edu/news/workshops)

Chemistry Seminars

Defenses
Medicine/Immunology
“The Heart Shock Protein-CDF1 Pathway in Immunomodulation of Cancer,” Yu Zhou; Feb. 12, 10:30 Scife, 10 pm

Entertainment
The New York Stock Exchange, Downtown, noon-5 pm (RSVP: 412-1544)

FEBRUARY 6, 2014

CONGRATULATIONS TO

Jane Wallace and Katherine Wolfe

Recipients of the 2014 Ampco-Pittsburgh Prize for Excellence in Advising.

For more than 10 years, Jane Wallace and Katherine Wolfe have touched the lives of thousands of undergraduate students in the Kenneth P. Dietrich School of Arts and Sciences. Lecturers in the Department of Economics, this outstanding advising team is being recognized for their extraordinary record of academic advising and the many contributions that they have made to help students maximize their educational experience.
A DIFFERENCE YOU CAN FEEL

AS SOUL-STIRRING EXPERIENCE. In ancient China, artists valued integrity, meditation, and a mindful lifestyle. They took to heart the belief that to create inspiring art there must first be inner beauty. Today, Shen Yun's artists follow this noble tradition, incorporating study and meditation into their rigorous daily training. The result? A performance that moves audiences in beautiful and profound ways. This is the Shen Yun difference.